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We discuss issues concerning the reconstruction of attractors from experimental chaotic time-series
data using Takens’s method of delays [in Proceedings of the Warwick Symposium, 1981, edited by D. A.
Rand and L. S. Young (Springer, New York, 1981)]. The focus of this paper is on the selection of ap-
propriate lag-time and embedding-dimension values with an emphasis on the relationship between those
parameters and data-measurement considerations. We are particularly interested in the effect that low-
pass filtering has on the appearance and measured properties of reconstructed attractors. Empirical re-
sults are presented using data measured from a laboratory fluidized bed and from data generated by in-
tegrating the Lorenz [J. Atmospheric Sci. 20, 130 (1963)] and Franceschini [Physica 6D, 285 (1983)]

models of chaotic dynamic systems.

PACS number(s): 47.20.Ky

I. INTRODUCTION

The modern point of view, borrowed from Poincaré
and extended more recently by other researchers, is that
nonlinear dynamical systems are, in general, represented
by attractors in state space. The characterization or
analysis of such a nonlinear dynamical process is, in turn,
largely equivalent to studying (a) the geometric structure
of the attractor, (b) the flow properties of trajectories on
the attractor, and (c) the relationships between the
geometric structure and flow properties. In this paper we
address issues concerning attractor reconstruction from
time series data using Takens’s method of delays [1]. We
are particularly interested in questions about the analysis
of time-series measurements of real engineering systems
and how background processes, including noise, can
affect the attractor reconstruction results. The role
played by low-pass filtering in the data-analysis process is
the theme of this paper. That role is examined from two
standpoints: First, we consider the use of low-pass filter-
ing to compensate for background information and noise
in the data, and second, we consider the use of low-pass
filtering as a diagnostic tool for examining the structure
of the attractor. In a companion paper, we will address
the related problem of analyzing flow on the reconstruct-
ed attractor. Together, these papers give details and ex-
pand on results reported in a Rapid Communication [2].

The attractor-reconstruction examples given in this pa-
per derive primarily from experimental time-series data
measured from a complex gas-solids flow. In order to re-
late what we do to that reported by other researchers, we
also use time series generated from the Lorenz [3] and
Franceschini [4] model systems of ordinary differential
equations. Another reason for also using model data is to
explore the extent to which lessons learned using it can
be carried over to the context of experimental data.

The approach we investigate in this paper for imple-
menting Takens’s method for attractor reconstruction
follows the direction described by Broomhead and King
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[5]. In their approach, Broomhead and King use the
spectral density and autocorrelation of a random vari-
able, here represented by a measured time series, together
with the singular values of the so-called trajectory matrix
to establish conditions for choosing values of the lag-time
and embedding-dimension parameters. Using the data
described above, we test the guidelines posed by Broom-
head and King for choosing those parameter values. In
particular, we look at how those parameter values are
affected by moving the low-pass filter-cutoff point.

As stated above, we are especially interested in applica-
tions using experimental data representative of engineer-
ing systems and realistic measurement conditions. Under
such conditions, the environment in which a measure-
ment is made is likely to make a nontrivial contribution
to the frequency content of the measured variable and,
thus, affect the attractor-reconstruction process. The pri-
mary objective of the work presented here is to evaluate
whether the guidelines posed by Broomhead and King for
choosing the lag-time and embedding-dimension values
have to be modified due to the presence of background
processes and noise. In addition, we study the effect on
the reconstruction process of varying the filter-cutoff
point over a range of values for which the energy of the
process of interest clearly dominates that of the back-
ground. This is done for two reasons. First, we want to
see if information about the geometric structure of the at-
tractor is well mixed among the frequencies. Second, we
want to determine whether additional information about
the process can be gained by, in a sense, successively
stripping away increasing amounts of detail from the
measured data by filtering. For example, we might ex-
pect to gain a better view of the large-scale structure of
the reconstructed attractor this way.

The relationship between the attractor-reconstruction
process and the three parameters lag time, embedding di-
mension, and filter-cutoff point is studied the following
way: First, for a given reconstructed attractor, the corre-
lation integral [6] is calculated and used as a quantitative
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observable of that attractor. Second, the singular values
of the trajectory matrix discussed by Broomhead and
King [5] are analyzed in terms of filter-cutoff frequency
and “window” length. Then, the effect of changing pa-
rameter values on the singular values is related to ob-
served effects on the correlation integral.

Before proceeding, we want to acknowledge two areas
of research previously reported in the literature that are
important to be aware of because they have bearing on
the material presented here. First, filtering is part of all
real data measurement processes and, so, it is of very
practical importance to know how the act of filtering im-
pacts the reconstruction process, which we understand to
include all information embodied in the reconstructed at-
tractor about the process of interest. Badii et al. [7], fol-
lowed by Mitschhe, Moller, and Lange [8], have contrib-
uted toward developing an understanding about the pres-
ence of low-pass filters on measures of chaotic structure
as represented by reconstructed attractors. More recent-
ly, Broomhead, Huke, and Muldoon [9] have investigated
the same topic, and, in particular, have given a heuristic
explanation for the observations of the aforementioned
researchers. The scope of the present paper does not per-
mit us to analyze points made by those researchers rela-
tive to the fluidized-bed analyses presented here, but we
will outline the conclusions reached by those researchers
and describe how the fluidized-bed results do, or do not,
reflect those conclusions. We plan to examine this issue
quantitatively in a future paper.

Fraser and Swinney [10] and Fraser [11] have proposed
and studied another means than the Broomhead and
King approach for implementing Takens’s method of de-
lays. The difference in approaches for selecting lag-time
and embedding-dimension values owes largely to the
difference in the correlation and mutual information mea-
sures of independence between two random variables (see
Fraser [11] for a comparative description of the difference
in those measures). It should be noted that Fraser [11] is
critical of the Broomhead and King technique. In this
paper we make no attempt at comparing the two methods
or at arguing the relative merit of one over the other.

The remainder of this paper is organized as follows. In
Sec. II we describe the generation of our experimental
and numerical time series, discuss the low-pass filter we
use, and present spectral density functions for the data.
In this section we also review work by other researchers
concerning filters. In Sec. III, we present the results of
our studies. For completeness, we also review the
Broomhead and King approach for selecting lag-time and
embedding-dimension values and display the form of the
definition of correlation integral used to make calcula-
tions. Finally, in Sec. IV we summarize our findings.

II. TIME-SERIES DATA

In this section we discuss the time-series measure-
ments. We also describe the filtering technique used to
process the data subsequent to measurement. Spectral
density curves for the data are displayed. We conclude
this section with a review of the work concerning filters
by Badii et al. [7], Mitschhe, Moller, and Lange [8], and
Broomhead, Huke, and Muldoon [9].

A. Experimental fluidized-bed measurements

Fluidized beds are generic processing devices used
widely in the chemical and petroleum industries to gen-
erate intimate physical contact between fluids and parti-
culate solids. The particles are typically contained in a
vertically oriented vessel and the fluid enters from the
bottom and exits from the top. The upward drag of the
fluid balances counteracting gravity, causing the particles
to whirl about in complex patterns that depend on the
influx rate of the fluid.

In the experiments used to generate data for this paper,
the fluidized bed consisted of a vertical 10.2-cm-diam
pipe filled to a static depth of 11 cm with granular corn,
or maize, particles approximately 5 mm in diameter.
Corn was used for this experiment because of a particular
interest in the dynamical behavior of relatively large, ir-
regularly shaped particles. Air flows into the pipe
through a multiple-orifice distributor that produces a
sufficient pressure drop to decouple the fluidization dy-
namics from the air-supply system. After passing
through the particles, the air exists the pipe directly into
the atmosphere. The overall pressure drop between the
bottom of the bed just above the air distributor and the
atmosphere was measured with a fast-response piezoelec-
tric pressure transducer. The time series used in this pa-
per correspond to the fluctuations in that pressure drop.

Data-acquisition rates were typically 500 samples/sec
and the records used for this paper were typically 2 X 10*
points. Before digitization and storage, pressure trans-
ducer signals were amplified to maximize resolution of
the signal fluctuations. The signals were then filtered
through high- and low-pass analog filters having a 24 dB
per octave (80 dB per decade) rolloff. High-pass filtering
was done at 0.1 Hz to eliminate dc and establish a fre-
quency minimum (maximum period) for subsequent
analysis. Low-pass filtering (anti-aliasing filtering) was
done at 40 Hz to establish a frequency maximum
(minimum period) and to remove frequencies that could
interfere with the sampling process to produce low-
frequency artifacts (i.e., Nyquist folding frequencies [12]).
The low-pass frequency (40 Hz) was used, in part, to in-
sure the removal of the 60-Hz line frequency.

In accord with good experimental practice, we made
reasonable efforts to shield the pressure transducer from
outside vibration and the data-acquisition equipment
from external electrical fields. We deliberately did not
make extraordinary measures to shield the transducer,
however, in order to produce ‘“realistically noisy” data.
To obtain a direct estimate of the inherent noise in the
measurement system, we also captured data for a null
condition; i.e., a completely stationary bed through
which no air was flowing.

Figure 1 depicts portions of the as-measured time
series for the superficial (i.e., open-tube) air velocities 2.4
and 5.7 m/s, respectively. Corresponding open-tube Rey-
nolds numbers for those flows are 1.35X10* and
3.77X10* The two positive air flows produce distinct
turbulence patterns. The pattern at 2.4 m/s is typically
designated as ‘“‘slugging” and is characterized by large
pressure swings produced by gas pockets (“bubbles’) that
move up alternately with clumps of solids. During slug-
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FIG. 1. Fluidized-bed time series: (a) v=2.4 m/s; (b) v=5.7
m/s.

ging, the gas pockets become large enough to fill the tube
cross section. At 5.7 m/s the pressure swings are re-
duced, well-defined bubbles are absent, and the clumps of
solids are replaced by ‘‘strands” that appear to constantly
break and reform.

Figure 2 displays the power spectrums for the two pos-
itive air flow time-series measurements and for the null-
condition measurement. Note that the power in the 2.4-
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FIG. 2. Fluidized-bed spectral density functions.
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m/s data is concentrated in a dominant peak near 2 Hz
and a lesser peak at approximately 4 Hz. These two
peaks reflect the physical phenomenon of slugging,
which, as described above, means the solids tend to move
collectively as a large slug and, likewise, the gas as a large
void. The power in the 5.7-m/s data is much more
dispersed, reflecting the broader range of flow velocities
that simultaneously occur in this state. Beds operating in
the latter regime are said to exhibit “fast fluidization™
and are characterized by small and highly mixed solid-
gas regions. In a slugging state, large pockets of gas pass
through the bed without making very much surface area
contact with solids, which is in contrast with a fast fluidi-
zation state. For that reason, the fast fluidization state is
in general more desirable than the slugging state from an
applications standpoint. These two data sets are used in
this paper because they represent very different physical
regimes in a gas fluidized-bed process.

B. Ordinary differential-equation model data

We use the Lorenz [3] and Franceschini [4] model sys-
tems of ordinary differential equations to generate model
data. The Lorenz model is very well known, and, in par-
ticular, Broomhead and King use it for an example of the
application of their reconstruction method [5]. The
Lorenz equations are displayed in the Broomhead and
King paper and the notation we use here coincides with
that used by those researchers. Mimicking Broomhead
and King, the parameter values we use for the Lorenz
model are 0 =10, b=4£, and r=28, and we use the x
component of the system equations to generate time-
series data. The sample time we use for the Lorenz data
is again the same one used by Broomhead and King,
namely, ¢, =0.003.

The Franceschini model is a system of seven ordinary
differential equations that approximates incompressible
fluid flow on the surface of a two-dimensional torus [4].
Franceschini reports that the model exhibits a series of
bifurcations as a Reynolds number parameter, denoted R,
is varied over the range 226.0-299.0 and that the system
first loses its stability to a strange attractor at approxi-
mately R =299.25. The Franceschini-model time-series
data used in this paper is that for R =310.0, a value for
which chaotic behavior is well developed. The recorded
time-series variable is the first component of the Fran-
ceschini model (see Eq. (4) in the Franceschini paper [4]).

A variable-order and variable-time-step Adams in-
tegrator, SUBROUTINE DEABM, from the well-known
mathematical software library SLATEC is used to integrate
the Lorenz- and Franceschini-model equations [13,14].
For such an integrator, the user supplies the output
times, which in this case corresponds to the preselected
sampling rate, while the integrator is free to vary the in-
tegration time step a well as order in keeping with user-
supplied error criteria.

Because we are using spectral density curves of
discretely sampled data, regardless of whether the “sys-
tem” is real, like a fluidized bed, or a model system of or-
dinary differential equations, Nyquist folding has to be
taken into account. The discretely sampled data, for ex-
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ample, the first component of the Franceschini model, is
accurate to the precision specified by the user to the nu-
merical integrator, but a spectral density analysis of that
data will reflect the Nyquist-folding effect. To mitigate
that effect, we integrate in parallel with the model equa-
tions a four-stage, linear filter based on the first-order
equation

1 dy
o dt

where x is input, y is output, @ =2wf, f=1/(2¢,) is the
Nyquist frequency, and ¢,”! is the sampling rate. For in-
stance, referring to the Franceschini model, the first com-
ponent of the model system is input to the first stage of
the four-stage filter. The output from the fourth stage of
the filter is the measured time series of the model system.
We point out that the accuracy criteria specified by the
user to the numerical integrator establishes a noise floor
in the measured data as represented, for example, by a
spectral density analysis. If that data is subsequently
filtered again, such as we describe below, that floor will
be reduced until ultimately the floor associated with the
arithmetic precision of the computer being used is
reached. That does not mean the more highly filtered
data is more precise than the original set. Clearly, the ac-
curacy of the data for frequencies less than the filter-
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FIG. 3. Model spectral density functions:
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cutoff point is exactly the same as that of the original
measured set.

Figure 3 shows filtered and unfiltered spectral density
curves for the Lorenz and Franceschini models. For the
Franceschini model, Fig. 3(a) shows spectral density
curves for the filtered and unfiltered time series corre-
sponding to the sampling rate ¢, '=10° Hz, and Figs.
3(b) and 3(c) display spectral density curves for the
filtered and unfiltered time series corresponding to the
sampling rate ¢, !=6 Hz. The power spectrums
displayed in Fig. 3(a) imply, first, the sampling frequency
used in that case is sufficiently high to resolve all the
meaningful frequencies in the system, and second, that
the information in the filtered and unfiltered variables is
the same. In the second case, however, the sampling rate
does not resolve all meaningful frequencies in the system,
and, consequently, there is a difference in the information
content of the filtered and unfiltered variables. A com-
parison of Figs. 3(b) and 3(c) illustrates the result of fold-
ing, whereby information in frequencies greater than the
Nyquist frequency is folded back into the frequency
range bounded above by the Nyquist frequency. Turning
to the Lorenz model, Fig. 3(d) displays the spectral densi-
ty functions for the filtered and unfiltered discrete vari-
able. Clearly, the significant frequencies are resolved by
the chosen sampling rate (¢, '=3.33X 10 Hz).
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C. Digital low-pass filtering

The low-pass filter described by Eq. (2.1) can be analyt-
ically integrated. Doing so leads to the digital filter

Yit1=yiexp(—ot,)+x;[1—exp(—wt,)] , (2.2)

where y; is the output value at time ¢;, x; is the input
value at time ¢;, w=2wf, f is the characteristic filter-
cutoff frequency, and ¢, =t¢; , ,—¢;. Low-pass filtering of
the time-series data, both experimental and model, at fre-
quencies below the Nyquist frequency is accomplished
using this digital filter. Equation (2.2) is referred to in
control theory as a first-order lag (or first-order infinite-
impulse-response filter) and is frequency used to simulate
the behavior of measurement components [15]. We re-
peat the filtering four times, which is to say the output of
the first stage is input to the second and so forth, to give
the digital filter a similar frequency rolloff characteristic
to that of the analog filter. The resulting effect is
equivalent to a fourth-order lag.

The characteristic response time of the filter is 1/27f,
where f is the low-pass frequency. In effect, the filter can
be used to simulate changes in the responsiveness, or in-
ertia, of the measurement system by adjusting the value
of f, where lower values of f result in deceased respon-
siveness. Variations in the signal occurring at time scales
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smaller than 1/27f are effectively smoothed while varia-
tions occurring at time scales longer than 1/27f remain
unaffected.

Recall that Fig. 2 illustrates spectral densities for the
fluidized-bed measured data. Figures 4(a) and 4(b) show
spectral densities for the fluidized-bed data successively
filtered using filter-cutoff values f =24, 8, 4, and 2 Hz.
The background is not displayed in Figs. 4(a), and 4(b).
However, if we displayed a plot of the power spectrums
for the two experimental time series filtered, say, at
f =24 Hz and added to that plot the power spectrum of
the measured background also filtered at f=24 Hz, the
plot would show the powers of experimental processes
both dominate that for the background over the full
range of frequencies. Figure 4(c) displays spectral density
curves for the Lorenz time-series data filtered using the
cutoff values f =166, 6, 3, and 1.5 Hz. Finally, Fig. 4(d)
shows spectral density curves for the Franceschini-model
data filtered using the cutoff values f=250, 50, and 30
Hz.

D. Previous research concerning the effect
of filtering on estimates of dimension

One point of view that can be adopted regarding the
act of making a quantitative measurement of some ob-
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FIG. 4. Spectral density functions for filtered data: (a) Fluidized-bed data, v =2.4 m/s; (b) fluidized-bed data, v=5.7 m/s; (c)

Lorenz data; (d) Franceschini data.
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servable associated with a physical process, for example,
a fluidized bed, is that the process actually observed is the
coupled system corresponding to the physical process
and the instrument for making the measurement. Con-
sider, for example, the process represented by coupling
the Lorenz equations with an instrument represented by
the low-pass linear filter Eq. (2.1). Referring to the spec-
tral density curves for the Lorenz process, Fig. 3(d), if the
filter cutoff frequency is set greater than approximately
20 Hz so that frequencies with energy above the noise
floor are resolved, then the filtered and unfiltered observ-
ables will contain the same dynamical information.
Again referring to Fig. 3(d), if, on the other hand, the
filter-cutoff point was set at, say, 1 Hz, then the process
corresponding to the Lorenz equations coupled with the
filter and represented by the filtered observable would be
significantly different than that of the Lorenz equations
alone. Information in the observable for frequencies
greater than the cutoff frequency, but less than the fre-
quency where the noise floor is reached, reflects the filter
and not the process being observed.

The effect of observing a process using a low-pass
filtered observable has been considered by Badii et al. [7].
Subsequently, Mitschhe, Moller, and Lange [8] tested the
idea described by Badii, et al. [7] using experimental as
well as model data. The essence of the idea can be de-
scribed using the example described above, namely, the
model process consisting of the Lorenz model coupled
with the low-pass-filter model Eq. (2.1). Adding the low-
pass filter Eq. (2.1) to the system of Lorenz equations in-
creases the number of Lyapunov exponents from three to
four for the coupled system. As long as the cutoff fre-
quency of the low-pass filter is sufficiently high, the new
stable Lyaponov exponent in the coupled system will be
less than the stable Lyaponov exponent in the Lorenz sys-
tem and, therefore, the Lyaponov dimension of the cou-
pled system will be the same as that of the Lorenz process
alone (see Eq. (2) in Ref. [7]). If, on the other hand, the
filter-cutoff frequency is reduced to the point that the
new stable Lyaponov exponent is greater than the stable
Lyaponov exponent of the Lorenz system, than the
Lyaponov dimension of the coupled process will be
greater than that of the Lorenz process.

Broomhead, Huke, and Muldoon [9] have investigated,
first, the effect of nonrecursive linear filters on the recon-
struction process and, second, have used that result to
heuristically explain observations concerning estimates of
dimension made by Badii et al. [7] and Mitschhe, Moller,
and Lange [8]. Consider the linear filter

n,—1

ny
yi=Xay -+ X bixi—;,
j=1 j=0

(2.3)

where x is input and y is output. If the right-hand side of
this expression depends only on x, that is, if all the
coefficients a =0, then the filter is nonrecursive. Other-
wise, the filter is recursive. Note that the filter defined by

Eq. (2.2) has the form
Yit1=ay; tbx;, (2.4)

where 0 <a <1 and b=1—a. This filter is recursive. Ac-
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cording to Broomhead, Huke, and Muldoon [9], dimen-
sion is invariant in the case that the output of a finite-
order nonrecursive filter is used for the attractor-
reconstruction process. They go on to point out that a
recursive filter can be represented as the limit of a se-
quence of nonrecursive filters. Consider the recursive
filter Eq. (2.4). Suppose we replace y; on the right-hand
side by the expression obtained from Eq. (2.4) by replac-
ing i +1 by i, which produces an expression with y, _, ap-
pearing on the right-hand side. Next, replace y; _, by the
expression obtained from Eq. (2.4) by replacing i +1 by
i —1, and so forth. Repeating this recursive process n
times produces
n—1

Yiv1=a"y;—,+ Eajbxiéj . 2.5
=0

i=
As O<a <1, for n sufficiently large, y, , , is approximated
by the nonrecursive expression
n—1
Yipi= X albx;_; .
j=0

(2.6)

Referring to the recursive filter defined by Eq. (2.2), the
filter constant a is defined in terms of the filter-cutoff fre-
quency f and the sampling rate ¢, ! by

a=exp(—2wft,) . (2.7)

Assume the sampling rate is fixed. Then, the magnitude
of a” for a given value of n is determined by ft,. That is,
for a given magnitude, the lower the cutoff frequency f,
the higher the order # such that a” is that magnitude. If,
in particular, we are working in finite precision arithme-
tic, then, to that precision, the recursive filter Eq. (2.4) is
equivalent to the nonrecursive filter Eq. (2.6) for the value
n such that " is the magnitude of that precision.
Broomhead, Huke, and Muldoon argue heuristically that,
if the order n is large, then a calculation of dimension us-
ing limited amounts of data can result in overestimates of
dimension. We will return to this statement in the sum-
mary section and describe the reasoning behind it using
ideas developed in this paper.

Recall that we use a four-stage filter, where each stage
has the form Eq. (2.4). Leaving aside details, the effect of
using a four-stage filter is approximately equivalent to us-
ing a single stage with a as defined above Eq. (2.7) re-
placed by a*.

III. ATTRACTOR RECONSTRUCTION RESULTS

In this section we study the relationship between the
attractor-reconstruction process and the three parame-
ters (i) lag time, (ii) embedding dimension, and (iii) filter-
cutoff frequency. We begin with a brief review of the
Broomhead and King approach for implementing
Takens’s reconstruction procedure and of the definition
of correlation integral.

A. Reconstruction method and correlation integral definition

According to Takens’s method of delays [1], the system
attractor is reconstructed from time-series measurements
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by forming a trajectory in E", Euclidean n-dimensional
space, using the relationship

p(i)=(0(i),00i +k),00i +2k),...,00i+(n —DkNT,
(3.1

where p (i) is the embedded point in E”", 6(i) is the ith
measurement, k is an integral lag time, and 7T denotes
matrix transpose. The ith row of the trajectory matrix P
is p (/). In the subsequent discussion, we refer to the to-
tal time spanned by the trajectory vector,

t,=(n—1kt, , (3.2)

where ts‘1 is the data-measurement rate, as the ‘“‘embed-

ding window.” As pointed out in Sec. I, the biggest prob-
lem associated with implementing this embedding pro-
cedure is selecting ““correct” values for k and n.

Broomhead and King [5] propose that the length of the
embedding window should be determined by the highest
frequency for which significant power exists in the power
spectrum of the measured variable 6. Referring to the
spectral density function for the measured Lorenz data,
Fig. 3(d), one possibility is to identify that time scale with
the frequency where the power spectrum level reaches
the noise floor, which is ¢, '=~20 Hz. Once ¢, is estab-
lished, according to Broomhead and King # and k should
be selected to satisfy the condition

t,=t, - (3.3)

To proceed, Broomhead and King construct the trajecto-
ry covariance matrix

N
E=1/NP"P=1/N3 p;p],

i=1

(3.4)

where N is the total number of trajectory points, and ana-
lyze the eigenvalues and eigenvectors of that matrix.
Those eigenvalues are also identified as the singular
values of the trajectory matrix P. Assuming ¢, is known
and using the condition Eq. (3.3), a series of pairs (k,n) is
chosen with n increasing and the series of resulting eigen-
values of Z(k,n) is calculated. According to Broomhead
and King, appropriate values for (k,n) are selected by ap-
plying the criterion that the significant eigenvalues of
Z(k,n) are converged. The remaining eigenvalues serve
to establish a quantitative measure of the noise floor in
the data.

Having selected k and n values, Broomhead and King
go on to transform the trajectory Eq. (3.1) to a new set of
Cartesian coordinates for E"” determined by the eigenvec-
tors of the trajectory covariance matrix =Z. The eigenvec-
tors of Z, denoted for the moment by v;, are orthogonal.
Normalizing the eigenvectors by the condition vav}-= 1,
the coordinates of the transformed trajectory are simply
p,-ij, j=1,...,n. It is important to remember that this
transformation is geometry preserving and absolutely no
distortion in the reconstructed attractor is introduced in
the process. Measures of the dispersion of the attractor
about the transformed coordinate axes, called the princi-
pal axes, are given by the eigenvalues of =, which are
equivalent to standard deviations in the principal direc-
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tions. The components corresponding to purely noisy ei-
genvalues only result in adding a “skin thickness” to the
attractor in those coordinate directions.

We want to make three observations about the recon-
struction process described thus far. First, referring to
Eq. (3.3), the first step in the Broomhead and King ap-
proach is to establish the window length ¢,. In order to
do this, it is implicitly assumed, first, that the data have
been measured at a sufficiently high rate to resolve all
meaningful dynamics of the system and, second, that
there is a clear and unambiguous frequency #, ' bounding
the range of information from that of noise, such as is il-
lustrated in the Lorenz data [Fig. 3(d)]. Second, in the
Broomhead and King approach, k is decreased as 7 is in-
creased while maintaining the condition ¢, =¢, until, in
effect, the significant eigenvalues of the covariance matrix
Z, Eq. (3.4), are resolved (see Fig. 7 in Broomhead and
King [5]). The resulting lag-time value k is then used by
Broomhead and King to establish the “right” sampling
rate, namely, kz,. Third, we note that the window ¢, it-
self acts as a filter. This is the case because frequencies
f =1, ! are not resolved by the range of time scales in-
cluded within the window. In effect, simply increasing
the window from ¢, =t’ to ¢'+ At serves to filter the data
in the frequency range 1/¢' to 1/(¢'+At¢). This effect is
clearly evidenced in the correlation integral plots given
below.

We refer to Grassberger and Procaccia for the
definition of order-g fractal dimension (see Egs. (3.3) and
(3.4) in Grassberger and Procaccia [16]). Approxima-
tions of correlation integrals using discrete data are cal-
culated using the formula

N 1/g—1
C,(nN= [(1/N) 3 (n;(r))? " ,

j=1

(3.5)

where C,(r) is the correlation integral for the embedded
data, r is the observing length scale in E", ¢ is a non-
negative real variable, N is the number of points in the
embedding space, and n;(r) is the fraction of embedded
points surrounding point p (j) within the observing radius
r. If the correlation integral has exponential structure

C,(ryocr’s (3.6)

over some range of length scales 7, then D, is the order-q
fractal dimension of the attractor. The fractal dimension
corresponding to g =2 is referred to in the literature as
the correlation dimension [6,16]. The correlation in-
tegrals presented in this paper are for g =2.

B. Filtering affects on correlation integrals

We look at a sample of correlation integrals calculated
for reconstructed attractors using measured time-series
data and compare those results to ones obtained after
moving the filter-cutoff point. In particular, we use the
power spectrums of those time series to guide our choices
for window length. In the last part of this section we
show the length scale range for analyzing fractal struc-
ture can be estimated by examining the singular values of
the trajectory matrix.
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We begin by noting the contrast between the spectral
density curves for the measured fluidized-bed data (Fig.
2) and those for the Franceschini- and Lorenz-model data
[Figs. 3(a) and 3(d)]. Specifically, we point to the back-
ground in Fig. 2. Recall that the cutoff frequency for the
fluidized-bed measurements is 40 Hz. The rolloff at 40
Hz due to the filter is clearly visible in Fig. 2. It is also
clear in Fig. 2 that the frequency content of the back-
ground is not well separated from that of the two experi-
mental conditions for frequencies higher than approxi-
mately 25 Hz. Using that separation as a guideline, we
set

t, '=25 Hz (3.7

for the two sets of fluidized-bed data. Following Broom-
head and King, for the Lorenz and Franceschini data
sets, respectively, we tentatively set t,,“'=20 and 150 Hz,
which in each case is about where the power spectrum
reaches the noise floor.

We test the values for z, selected above by looking at
correlation integrals for a series of reconstructed attrac-
tors. Figures 5(a) and 6(a) show correlation integral anal-
yses for the two fluidized-bed measured time series over a
range of window lengths ¢,,. Similarly, Figs. 7(a) and 8(a)
display correlation integrals for the Lorenz and Fran-
ceschini data. Table I shows singular values for one case
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from each of the four figures 5(a), 6(a), 7(a), and 8(a). The
embedding dimension for each of those cases is n =10.
The first of the two fluidized-bed cases (v=2.4 m/s) is la-
beled FB; and the second (v=5.7 m/s) FB,, while the
Lorenz and Franceschini cases are labeled L and F, re-
spectively.

We observe that for both fluidized-bed experimental
conditions the correlation integrals for the reconstructed
attractors converge approximately where ¢, ~t,. For
both the Lorenz- and Franceschini-model cases, the
correlation integrals appear to converge at approximately
the frequency where the spectral density curve begins to
change slope before merging with the noise floor. For the
Lorenz case, that transition point is approximately
t, !~10 Hz, while for the Franceschini case it appears to
be 7, '=~110 Hz. We note that those frequencies each
mark the point where there is approximately an order of
magnitude difference in power relative to the noise floor.

Next, we look at the effect on the analysis of shifting
the filter-cutoff point. We start with the Lorenz case.
Recall that Fig. 4(c) displays spectral density curves cor-
responding to the Lorenz data successively filtered using
cutoff values f =166, 6, 3, and 1.5 Hz. Figure 7(b) shows
the result of analyzing correlation integrals for attractors
reconstructed using the parameter values (k,n)=(5,10),
which corresponds to 7, 1=7.4, for the first three cutoff

40 2

~5.0 24 2
24 2

-9.0

Ln [C(1]

~10.0 b L L a1 s
-3.0 -2.0 -1.0 0.0 1.0 2.0

tn (1)

FIG. 5. Fluidized-bed correlation integrals (v =2.4 m/s): (a) f =40 Hz; (b) f=40 and 24 Hz; (c) f =24 and 8 Hz; (d) f =8, and 4

Hz.
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TABLE 1. Singular values (n =10) for four cases. Note: 0.aaaa[n]=0.aaaa X 10".

FB, FB, L F
Index k= 2 2 4 1
1 0.2642[2] 0.2459[1] 10.5911[3] 0.2232[3)
2 0.9892[0] 0.5060[0] 0.2927[2] 0.4433[1]
3 0.9396[—1] 0.7174[—1] 0.1048[1] 0.7899[— 1]
4 0.1432[— 1] 0.1185[—1] 0.2849[—1] 0.2517[—2]
5 0.1834[—2] 0.1566[—2] 0.7670[— 3] 0.4572[—4]
6 0.1726[—3] 0.1368[—3] 0.1796[—4] 0.2394[—5]
7 0.8294[— 5] 0.7133[—5] 0.4570[— 6] 0.5857[— 6]
8 0.3177[—6] 0.2631[— 6] 0.7514[— 7] 0.4879[— 6]
9 0.8431[—8] 0.6568[— 8] 0.6673[—7) 0.4835[—7]
10 0.2461[—9] 0.1881[—9] 0.6596[— 7] 0.4631[—7]

values f =166, 6, and 3. The results are virtually identi-
cal. Now consider the analysis of the Lorenz measured
data filtered using the cutoff point f=1.5 Hz. Figure
7(c) displays correlation integrals for reconstructed at-
tractors corresponding to the fixed embedding dimension
n =10 and the range of time lags k =5, 10, and 15, which
determines the range of window frequencies ¢, '=7.4,
3.7, and 2.5. If the correlation integral from Fig. 7(c) cor-
responding to the window frequency ¢, !=2.5 Hz were
added to Fig. 7(b), it would be indistinguishable from the
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plots in that figure over the range —2.0=<Inr <2.0. In
Fig. 7(b), the slope of the correlation integral over the
range —4.0=Inr < —2.0 is approximately s=2.05,
which is the correlation dimension normally reported in
the literature [6]. There is a second range of fractal
structure corresponding approximately to —2.0<Inr
= 1.0, where the correlation dimension is approximately
s=1.8. We note from Fig. 7(c) that the fractal structure
for the second range of length scales is retained in the
data filtered using the cutoff frequency f=1.5, but that
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FIG. 6. Fluidized-bed correlation integrals (v =5.7 m/s): (a) f=40 Hz; (b) f =40, and 24 Hz; (c) f=24 and 8 Hz; (d) f=8 and 4

Hz.
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TABLE II. Fluidized-bed singular values (v=2.4 m/s, n =10) for one case from each of four filter

settings. Note. 0.aaaa[n]=0.aaaa X 10".

f= 40 24 8 4
Index k= 2 2 6 12
1 0.2642[2] 0.2574[2] 0.1676[2] 0.6255[1]
2 0.9892[0] 0.7346[0] 0.2487[1] 0.3397[1]
3 0.9396[— 1] 0.3295[—1] 0.5408[ — 1] 0.7173[— 1]
4 0.1432[—1] 0.2763[—2] 0.6103[—2] 0.8313[—2]
5 0.1834[—2] 0.2127[—3] 0.5422[— 3] 0.6728[—3]
6 0.1726[—3] 0.1795[—4] 0.6906[ — 4] 0.9857[—4]
7 0.8294[— 5] 0.8072[— 6] 0.8763[—5] 0.1584[ —4]
8 0.3177[— 6] 0.2748[—7] 0.1611[—5] 0.2919[—5]
9 0.8431[—8] 0.1103[— 8] 0.3426[— 6] 0.5558[— 6]
10 0.2461[—9] 0.5535[—7] 0.1115[—7] 0.1515[— 6]

the fractal structure in the smaller length scale range ap-
pears to be lost.

Figure 4(c) illustrates the spectral density curves for
the Franceschini-model data using the filter-cutoff values
f =250, 50, and 30, and Fig. 8(b) displays correlation in-
tegrals over the length scale range —2.0=Inr =2.0 for
three attractors constructed using those filtered data sets.
In each of those cases we use the parameter values
(k,n)=(4,10). For those parameter values ¢, '=27.7.
Without showing the plot, we make note that the correla-
tion integral for the measured Franceschini data, where
f =500, using those same parameter values for lag time
and embedding dimension is indistinguishable from the
result using the data filtered at f =250. The slope of the
correlation curve corresponding to n =10 in Fig. 8(a) is
approximately s =1.18, whereas the three curves in Fig.
8(b) each have the approximate slope s =1.05. Using the
same filtered data sets, we set (k,n)=(3,10), which deter-
mines f,, 1=37.0, and again calculate the correlation in-
tegrals. The results are displayed in Fig. 8(c). A second
region of fractal structure, now for the length scale range
—4.0=Inr < —2.0, is evidenced in Fig. 8(c).

We now consider the filtered fluidized-bed data. First,
we look at the case v=2.4 m/s. Table II contains singu-
lar values for one case corresponding to each of the four
filter settings, f =40, 24, 8, and 4. Figure 5(b) illustrates

correlation integrals for three reconstructed attractors
using data filtered at f =24 superimposed with two
correlation integrals for f =40. The two correlation in-
tegrals for f =40 are also presented in Fig. 5(a). We note
from Fig. S5(b) that for the approximate range
—2.5=<Inr = —1.5 both sets of correlation integrals are
linear and that the slope of the more highly filtered fami-
ly is less than that for the other. Further, we note there
appears to be a second region of linearity, which is more
visible for the f =24 family, over the length scale range
0.0=<Inr =2.0. Figure 5(c) displays plots of correlation
integrals for reconstructed attractors corresponding to
the filter-cutoff points f =24 and 8. The two case for
f =24 are also plotted in Fig. 5(b), but in Fig. 5(c) they
are translated one unit along the ordinate so that the two
families of curves can be clearly distinguished. Note
again there appear to be two regions of linearity. In the
neighborhood of Inr = —2.0, the slope of the f =28 family
is approximate to, but less than, the slope of the f=24
family. In Fig. 5(c) the linearity over the range
0.0=<Inr =2.0 is much more well defined for the more
highly filtered family. Finally, Fig. 5(d) shows plots of
correlation integrals for attractors constructed using the
filter-cutoff points f =8 and 4. The scales for Fig. 5(d)
are chosen so to magnify the features of the correlation
integrals over —3.0=Inr <2.0. We note that both fami-

TABLE III. Fluidized-bed singular values (v=5.7 m/s, n =10) for one case from each of four filter-

cutoff values. Note: 0.aaaa[n]=0.aaaa X 10".

f= 40 24 8 4

Index k= 2 2 6 12

1 0.2459[1] 0.2089[1] 0.7088[0] 0.2040[0]

2 0.5060[0] 0.2978[0] 0.2265[0] 0.1299[0]
3 0.7174[—1] 0.2278[—1] 0.2523[—1] 0.1299[—1]
4 0.1185[—1] 0.2035[—2] 0.3451[—2] 0.2616[—2]
5 0.1566[ —2] 0.1855[—3] 0.3528[—3] 0.3351[— 3]
6 0.1368[—3] 0.1416][—4] 0.4780[—4] 0.6307[—4]
7 0.7133[—5] 0.6860[ — 6] 0.7422[—5] 0.1083[—4]
8 0.2631[—6] 0.2195[—7] 0.1362[—5] 0.1957[—5]
9 0.6568[— 8] 0.4661[—9] 0.2832[—6] 0.3945[— 6]
10 0.1881[—9] 0.7436[—9] 0.5872[—17] 0.1071[— 6]
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lies appear to display the same structure in that range of
length scales.

Now we consider the fluidized-bed case v=5.7 m/s.
Table III contains singular values for one case from each
of the four time series obtained using the filter-cutoff
values f=40, 24, 8, and 4. Figure 6(b) displays three
correlation integrals from each of the two families of
reconstructed attractors corresponding to f =40 and 24,
where the correlation integrals for f=40 are also
displayed in Fig. 6(a). The linearity of the two families of
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FIG. 7. Lorenz model correlation integrals:
(b) f=166, 6, and 3 Hz, 1, '=7.4; (c) f=1.5 Hz.
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correlation integrals is clearly evidenced by the plots in
Fig. 6(b) and, further, we note that the slopes of those
families are more nearly equal than for the corresponding
pair in Fig. 5. Again, the slope of the family constructed
using the more highly filtered time series is less than that
for the other family. Figure 6(c) corresponds to Fig. 5(c).
The correlation integrals displayed in those figures derive
from the time series obtained using the filter settings
S =24 and 8 and, as in Fig. 5(c), the integrals for the
f =24 family are translated one unit along the ordinate
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FIG. 8. Franceschini model correlation integrals: (a) f =500
Hz; (b) f= 250 50, and 30 Hz, ¢, '=27.7; (c) f =250, 50, and 30
=37.0.

and Hz, ¢,
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TABLE IV. Fluidized-bed correlation dimensions.

D,
f v=2.4 (m/s) v=5.7 m/s
40 4.06 3.78
24 3.38 3.74
8 2.79 3.06
4 2.75 3.77

for the purpose of clarity. The f =8 family appears to
have linear structure for length scales in a neighborhood
of Inr=—2.5 and the slope for the family approximates
the slope for the f =24 family. Again we make a com-
parison with the corresponding pair of families of corre-
lation integrals for the case v=2.4 m/s, Fig. 5(c), and
note that for the higher-velocity case the slopes of the
two families are more nearly equal than for the lower-
velocity case. Figure 6(d) shows correlation integrals cal-
culated using time series obtained by filtering the mea-
sured data with the filter settings f =8 and 4. Figure 6(d)
corresponds to Fig. 5(d). Even for filter-cutoff value
f=4, the correlation integrals continue to display a
linear structure in a neighborhood of Inr =—2.5. How-
ever, there is a marked difference in that structure for the
two experimental conditions over the higher length scale
range. The v=5.7 m/s case does not display fractal
structure for the larger length scales, whereas the v =2.4
m/s case does.

Table IV is a summary of correlation dimensions es-
timated from the correlation integrals for the fluidized-
bed data presented in Figs. 5 and 6. For the case v=2.4
m/s, note the correlation dimension D, appears to de-
crease with decreasing f over the range of filter-cutoff
values used in this study. Except for the filter-cutoff
value f=8 Hz, the correlation dimension is invariant
with f for the case v=5.7 m/s. We point out for future
reference that this relationship between f and D, for the
case v=2.4 m/s is not consistent with the results of Bad-
dii et al. [7] and Mitschhe, Moller, and Lange [8]. We
will elaborate on this point in Sec. IV.

C. Effects of filtering on the observable dynamics

We want to analyze the effect of filtering and window
length on the attractor reconstruction process. The
correlation integral is used as a quantitative observable of
that process. We analyze the dependence of the correla-
tion integral on the filter-cutoff value f and the window
t, by, first, looking at the effect of those parameters on
the singular values of the correlation matrix Eq. (3.4)
and, second, relating changes in those singular values to
changes in a correlation integral. Figures 9(a)-9(f) are
singular value analyses for the two fluidized-bed cases,
and Figs. 9(g) and 9(h) are singular value studies for the
Lorenz and Franceschini cases. In the transformed coor-
dinates based on the singular value analysis of the corre-
lation matrix Eq. (3.4), the length scale of the recon-
structed attractor in a given coordinate direction is
r=0!"2, where o is the corresponding singular value.
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Figure 10 is a graph showing how length scales r relate to
singular values o.

First, consider the fluidized-bed data. Referring to
Figs. 9(a) and 9(b), with the filter frequency fixed at
f=40 and the window defined so that 7, '=~40, the
singular values for the two experimental conditions are
virtually identical; in fact, if the two plots were over-
layed, they would be indistinguishable. Figures 9(a) and
9(b) also illustrate that, with the filter frequency fixed at
/=40, moving the window frequency from ¢, '~40 to
t, '~25 causes the singular values to be amplified. The
two cases f =40 and ¢, ' ~25 from Figs. 9(a) and 9(b) are
plotted together in Fig. 9(c). Those singular value plots
appear to asymptotically converge and are virtually iden-
tical for singular value indices =4. Using Fig. 10, the
first six singular values correspond approximately to the
length scale range —5.0=<Inr <2. We note that is the
length scale range used for all the frames in Figs. 5 and 6
except those showing results for the filter cutoff f=4.
Referring to Figs. 5(a) and 6(a), note that the correlation
integrals appear linear only for length scales Inr > —2.5,
which corresponds in both cases to singular value indicies
=4.

Next, consider the effect of moving the filter cutoff
from f =40 to 24 while leaving the window frequency
value fixed at tJ1=25. Figures 9(a) and 9(b) show that,
for both experimental conditions, the singular values are
reduced in magnitude, but for each case the ratio of cor-
responding singular values, viewed as a function of singu-
lar value index, varies from 1 to an approximately con-
stant value for indicies = 3. The two singular value plots
from Figs. 9(a) and 9(b) for the conditions f =24 and
t, '~25 are also displayed in Fig. 9(c). They appear to
asymptotically converge at the index value 5. The corre-
lation integrals corresponding to the cases f =40 and 24
and t, '~25 are included in Figs. 5(b) and 6(b). We note
that for both examples the correlation integral for f =24
is approximately equal to a translation of the correlation
integral for f=40 and, further, that the stretching, or
distortion, for the range of length scales corresponding to
singular values 1-3 is less for the v=5.7 m/s case than
for the v=2.4 m/s case. The translation in each case
corresponds to the constant ratio value of corresponding
singular values. We note from Figs. 9(a) and 9(b) that the
variation in ratios of singular values for f=40 and 24
over indices 1-3 is smoother for the case v=5.7 m/s
than for the case v=2.4 m/s.

Figures 9(d) and 9(e) illustrate singular values for one
reconstructed attractor corresponding to each of the
filter-cutoff values f =40, 24, 8, and 4 for each of the two
experimental conditions. Further, each of the analysis
given in those figures correspond to one of the correlation
integrals in Figs. 5 and 6. Recall that in Figs. 5(c) and
7(c) the f =24 family is translated along the ordinate for
clarity. Note that in Figs. 5 and 6 for each of the cases
f <40, the window frequency ¢ '~ f.

First, consider the case v=2.4 m/s. Referring to Fig.
9(d), the ratio of singular values 3 and 4 for the pair f =8
and 24 appears to be approximately a constant times the
ratio of the same singular values for f =40 and 24. The
length scale range for singular values 3 and 4 is approxi-
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mately —2.5=<Inr =< —1. From Fig. 5(c), we note the
similarity in correlation integrals over those length scales
for the families f =24 and 8 and note, also, that informa-
tion on fractal structure for length scales corresponding
to the fifth singular value is lost in the f=8 family. In
contrast, Fig. 9(d) shows there is a significant difference
in the ratios of singular values 1-3 for the pairs f=40
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and 24 and f=8 and 24. As a result of moving the filter
value from f=24 to 8, the second singular value is
amplified and the ratio of the second to first singular
value is significantly magnified. As noted earlier, the
linear structure for length scales Inr >0, which corre-
sponds to singular values 1 and 2, is more clearly observ-
able for the f =38 family than for the f=24 family. In
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FIG. 9. Singular values: (a) fluidized-bed data, v=2.4 m/s, f=40 and 24; (b) fluidized-bed data, v =5.7 m/s, f =40 and 24; (c)
fluidized-bed data, v =2.4 and 5.7 m/s, f =40 and 24; (d) fluidized-bed data, v=2.4 m/s, f =40, 24, 8, and 4; (e) fluidized-bed data,
v=5.7 m/s, f=40, 24, 8 and 4; (f) fluidized-bed data, v=2.4 and 5.7 m/s, f=8 and 4; (g) Lorenz data, f=166, 6, 3, and 1.5; (h)

Franceschini data, f =500, 250, 50 and 30.
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FIG. 9.

going from the filter value f=8 to f =4, the second
singular value is magnified relative to the first, but the
correlation integrals, Fig. 5(d), are affected very little for
length scales Inr = —2.5. ]

Now consider the case v=5.7 m/s. From Fig. 9(e), ex-
cept that the second singular value is magnified relative
to the first in going from f =24 to f =38, singular values
1-5 are very similar. We note from Figs. 6(b) and 6(c)
that the correlation integrals for the families /=40, 24,
and 8 are translations of one another over the length
scale range — 3.5 <Inr. We also note that the fifth singu-
lar value corresponds to Inr = —3.5. Again referring to
Fig. 9(e), note that singular values 1-4 for f=8 and
f=4 vary very similarly, although the fourth is
magnified relative to the third in making the change. The
fourth singular value for those filter-cutoff values corre-
sponds to the length scale Inr = —3. Referring to Fig.
6(d), recall that the f =4 family is translated 1 unit along
the ordinate, again for clarity. The two families of corre-
lation integrals in that figure are very similar, but the
slope of the f =4 family is greater than that for the f =38
family for the range of length scales corresponding to the
third and fourth singular values.

Figure 9(f) shows together the singular value plots
from Figs. 9(b) and 9(c) for the filter values f=8 and 4.

FIG. 10. Relationship between singular values and length
scales.

N * # (=30
h
N a (=50
a @ (=250
o ¢ =500
.
T A
1.0 { o N N
s =
g ) ) ..
k! o, . ¢ )
3.0 " N
k n Y,
-
30 4 10 2/
50 4 10 277 o §
Lo 290 4 100 270 . =
: 500 1 10 111.0
i o \‘*-; ».
| o .
70t . D . SR S
1 3 5 7 9
Singular Voiue Index
(Continued).

The pairs corresponding to the two experimental condi-
tions are clearly distinguishable in that figure for indices
1-5, but it is also evident in that figure that the plots do
not differ significantly for indices =5. Recall Fig. 9(c).
Figure 9(c) illustrates that the two pairs of plots from
Figs. 9(a) and 9(b) corresponding to the conditions f =40
and t, '~25, and f =24 and t, '~25, respectively, have
the property that the singular values in each pair con-
verge asymptotically and are indistinguishable for indices
>4. We also recall that the two singular value plots
from Figs. 9(a) and 9(b) corresponding to f=40 and
t, !~40 are virtually identical. An explanation for these
observations is that the singular values with indices =5
are dominated by background processes.

Figure 9(g) shows singular values for the Lorenz case
and Fig. 7 shows correlation integrals for the Lorenz
data. Note from Fig. 7(b) that the fractal structure of the
Lorenz data corresponds to length scales Inr = —4 and
from Figs. 9(e) and 10 that those length scales correspond
approximately to the first five—six singular values. The
ratio of singular values 1-6 corresponding to one pair of
filter values differs from that of any other pair by approx-
imately a scale factor. As noted earlier, there is virtually
no change in the correlation integrals.

Figure 9(h) shows singular values for the Franceschini
case, and Fig. 8 shows correlation integrals for the Fran-
ceschini data. Recall that in Fig. 8(b) the filtered data
sets are analyzed using the window frequency ¢, !=27.7,
while in Fig. 8(c) the same data sets are analyzed using
t,'=37.0. In Fig. 9(h) we use the same lag time and
embedding dimension for the filtered data sets as used in
Fig. 8(b). Without showing the plots, we note that the
singular value structure for the filtered data sets using the
lag time and embedding dimension used in Fig. 8(c) is the
same as that in Fig. 9(h). With the window frequency
t,;lz30. 0, Figs. 8(b) and 8(c) illustrate that the correla-
tion integral is insensitive to variations in the filter-cutoff
point over the range 30 < f < 500.

To conclude this section, we briefly consider one addi-
tional aspect of the reconstruction process as relates to
principal component analysis and filtering. Singular
value analysis of the trajectory matrix Eq. (3.4) provides a
global means for projecting the reconstructed attractor in
E" onto a least-squares approximation of that attractor
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contained in a linear subspace of E". To be specific, after
making the transformation to the basis of E" defined by
the eigenvectors of the correlation matrix Eq. (3.4), we
project the attractor into the linear subspace spanned by
the eigenvectors corresponding to eigenvalues greater
than the noise floor value. Referring to a remark made
earlier in this section, qualitatively this has the effect of
smoothing the ‘“‘skin thickness” of the attractor in the
coordinate directions associated with the noisy eigenval-
ues. This projection does not effect the fractal structure
of the attractor, since it only acts on length scales associ-
ated with noise in the process. For example, consider
Fig. 5(b). That figure shows several correlation integrals
for attractors constructed using the fluidized-bed data
v=2.4 m/s. One of those correlation integrals is for the
case f =24 and the reconstructed attractor obtained us-
ing the parameter values (k,n)=(2,10). If we were to
add to Fig. 5(b) the correlation integral calculated using
the approximate attractor obtained by projecting that at-
tractor into the six-dimensional linear subspace of E'°
corresponding to the first six principal components (see
Table I), the two integrals would be virtually indistin-
guishable.

IV. SUMMARY AND CONCLUSIONS

The primary objective of the work presented in this pa-
per is to investigate the Broomhead and King approach
for implementing Takens’s method of delays using experi-
mental data obtained under realistic measurement condi-
tions. Under such conditions, it can be expected that the
background environment where the experiment, or en-
gineering process, is conducted will contribute to the fre-
quency content of the measured observable.

Filtering is an important aspect of all forms of data
measurement. In particular, low-pass filters are incor-
porated in time-series measurement devices to mitigate
Nyquist folding. We investigate the relationship between
the low-pass filter-cutoff point f, the Broomhead and
King window frequency t, ', and the background pro-
cess. Further, we study the effect on attractor recon-
struction of varying the filter-cutoff frequency over a
wide range of values. One reason for doing this is to in-
vestigate whether the filter, by means of moving the
filter-cutoff frequency, can be used as a diagnostic tool for
studying the structure of the attractor.

The experimental data used in this paper are time-

series pressure measurements from a laboratory fluidized

bed. We use data corresponding to two very distinct ex-
perimental conditions. Also, we have data for the null
experimental condition, that is, the case where the fluid-
ized bed is not in operation. That data serve to represent
the background. We also use data obtained from two
model systems of ordinary differential equations, the
Lorenz and Franceschini models. The primary motiva-
tion for including model data in our study is to see
whether there are significant differences between analyz-
ing experimental and model data.

The fluidized-bed data are measured using a low-pass
filter-cutoff value f=40 Hz. From the spectral density
curves for the experimental data, Fig. 2, it is clear that
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the background is not distinguishable from the fluidized-
bed process for frequencies greater than z, '~25 Hz. It
appears from the correlation integral studies [Figs. 5(a)
and 6(a)] that a necessary condition for convergence is
that the Broomhead and King window frequency
t, '=t, . As illustrated in Fig. 9(c), moving the filter
cutoff from 40 to 24 Hz has a very similar effect on the
singular values for both cases. For both cases, the singu-
lar values of order three and higher are decreased
significantly. However, as shown in Table IV and illus-
trated in Figs. 5(b) and 6(b), the result of moving the filter
frequency on the estimated correlation dimension is
different for the two cases. For the case v=35.7m/s, there
is a shift in the length scale range of fractal structure,
which corresponds to the decrease in the singular values,
but the fractal structure is unchanged. For the case
v=2.4 m/s, there is the same shift in the range of fractal
structure, but the dimension changes from D, ~4.06 to
D, ~3.38. Referring again to Fig. 9(c), looking at the ra-
tio of higher-order singular values to the first singular
value and considering the change with the filter-cutoff
point, for the case v=2.4 m/s the relative decrease in
singular values 3 and 4 is significantly greater than for
the case v=5.7 m/s. Turning to the model data, in both
cases we find the correlation integrals converge at ap-
proximately the window frequency where there is an or-
der of magnitude difference in the power of the process
and the power of the noise floor (see Figs. 3, 7, and 8).

We study the effect on the attractor-reconstruction
process of varying the filter-cutoff point from 24 to 4 Hz
by first looking at the effect of moving the filter value on
correlation integrals and then relating that effect to ob-
served changes in the singular values of the correlation
matrix Eq. (3.1). In those studies the window frequency
is moved so that the condition z, '~f is maintained.
From Fig. 2, we note the spectral density for the fluidized
bed case v=>5.7 m/s is significantly more broadband than
that for the case v=2.4 m/s. Table IV summarizes
correlation dimension values as parametrized by the
filter-cutoff frequency for the two fluidized-bed cases.
Those results also serve to distinguish the two fluidized-
bed regimes. With reference to Figs. 5 and 6, for both
cases high frequencies contribute to small length scale
structure in the correlation integrals, so that as the cutoff
frequency is lowered the minimum resolved length scale
increases. Consider the case v=5.7 m/s. It appears that
frequencies lower than the cutoff frequency contribute in-
formation about fractal structure to each of the singular
coordinate directions and that, while the minimum
length scale of resolution increases, the information con-
tribution to each degree of freedom is invariant with the
cutoff frequency. Consider, however, the case v=2.4
m/s. The results for this case imply that, as the cutoff
frequency is decreased, information about fractal struc-
ture is increasingly removed from the significant lowest-
order degrees of freedom. The singular value analyses,
again parametrized by the cutoff frequency, serve to fur-
ther discriminate between the two cases. For instance, a
comparison of Figs. 9(d) and 9(e) illustrates that there is a
difference between the two cases insofar as how the
significant singular values, those with indices 1-5, vary
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with the cutoff frequency. For the case v=5.7 m/s, as
the cutoff frequency varies from 24 to 4 Hz, there is very
little variation in the singular values corresponding to the
length scale range of fractal structure. On the other
hand, for the case v=2.4 m/s, there is a significant in-
crease in the second singular value as the cutoff frequency
is moved from 24 to 8 Hz and, from Table IV, the es-
timated dimension changes from D, =3.38 to D,=2.79.

We summarize the model studies. Concerning the
Lorenz data, moving the filter-cutoff value has little effect
on the structure of the singular value spectrum, Fig. 9(g),
and, in turn, little effect on the correlation integrals, Fig.
7. Referring to Fig. 8 for correlation integrals and Fig.
9(h) for singular value analyses, the Franceschini-data
analyses are also insensitive to wide variations in the
filter-cutoff value.

We want to relate the window frequency condition
t, '~ f to the discussion of filters by Broomhead, Huke,
and Muldoon [9]. For frequencies higher than the cutoff
frequency f, a filter produces noise. Therefore, if 2, !> f,
the window used for the reconstruction process includes
information produced by the filter, and hence we would
expect the resulting dimension to be greater than that for
the process represented only by frequencies less than the
filter-cutoff frequency f. This is consistent with the
fluidized-bed analyses presented in this paper in that we
did not see convergence in the correlation integral while
t, !> f. In effect, Broomhead, Huke, and Muldoon [9]
are also imposing the condition ¢, ' =~ f in their argument
regarding the approximation of a recursive filter by a
nonrecursive one. Recall the expression (2.5),

n—1
Vivi=a"y_,t ¥ albx;_;,
j=0
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where
a=exp(—2mft,) .

The condition a”"~0, where n is the order of the nonre-
cursive filter that is equivalent to the recursive filter, is
essentially equivalent to the window frequency condition
t,=(n—1t ~f ! where now n is the embedding di-
mension. Broomhead, Huke, and Muldoon [9] are im-
posing the condition on the reconstruction process that
the attractors constructed using the filtered data y and
the unfiltered data x are equivalent provided ¢, !=f. In
turn, they argue that if the order of the nonrecursive
filter n, which is also the required embedding dimension,
is large, then a large amount of data is needed to resolve
the reconstructed attractor and, hence, to analyze the di-
mension.

Takens’s reconstruction theorem together with the re-
sults of Broomhead, Huke, and Muldoon [9] implies that
data corresponding to frequencies less than the filter-
cutoff frequency can, in principle, provide all the infor-
mation needed for the reconstruction process. The ques-
tions that remain are, first, how much data is needed and,
second, what is the accuracy requirement for that data?
Broomhead, Huke, and Muldoon [9] point to limited
amounts of data as a cause for inaccurate estimates of di-
mension, particularly in reference to large values of the
embedding dimension. The fluidized-bed studies present-
ed in this paper are all based on one data set size, namely,
2% 10* points, and a fixed data-measurement accuracy
criterion. Given those conditions, the effect of moving
the filter-cutoff point on the analysis of the two very dis-
tinct fluidized-bed regimes is significant.
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